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Why this research is important 

As mentioned, fractional calculus is capable of modelling 

extremely complex phenomena and is thus becoming a more and 

more sought-after field of math for applications in science and 

engineering. As the phenomena get more complex, the 

corresponding models also tend to become more complex. Thus, 

the theoretical study of fractional integro-differential equations 

contributes towards creating a comprehensive body of work that 

creates a catalogue of analysis of these equations ranging from 

answering questions like: “Does this equation even have a 

solution?” “Is the solution unique, or are there multiple 

solutions?” “What happens when a slight modification (to be 

more technical, a perturbation) happens to the system we are 

given?” to demonstrate various useful and powerful techniques to 

tackle these massive equations. 

How the research was conducted 

Using various techniques such as theorems from Fixed Point 

Theory, Babenko’s Approach, and Banach’s Contractive Principle, 

we have analyzed some properties of fractional partial integro-

differential equations with certain initial conditions. Furthermore, 

one recent topic we have been researching is making various 

What you need to know 

Ordinary calculus deals with the mathematics of change and the 

infinitely small. It is focused on two of the most important tools 

in mathematics: the derivative and the integral. These tools are 

useful in every field of science, finance, and many other areas. 

The application of these operators often lies in differential 

equations, which are equations that can capture some sort of 

changing relationship between several variables. 

If we take a derivative once, we call it a first derivative. If we take 

it twice, we call it the second derivative. Similarly, you can get the 

third, fourth, fifth derivative and so on. We can also do multiple 

integrals. However, notice how we are restricted to only dealing 

with these whole number-order operators. What fractional 

calculus poses is an extension of regular calculus by allowing for 

fractional order derivatives and fractional order integrals. 

Suddenly, we are capable of asking what the half derivative of a 

function is or what the πth integral of a function might look like. 

By creating a continuum over which we can use these operators, 

fractional calculus has extended the capabilities of traditional 

calculus to allow for the modelling of much more complex 

systems and has been used in areas as different as quantum 

gravity theory to animal movement patterns. Our research 

focuses on analyzing various differential and integral equations 

with different conditions (called initial or boundary conditions) 

that use these fractional calculus operators. 



  

 

generalizations to the Mittag-Leffler function, which is a widely 

used function in the study of fractional calculus. One such 

generalization is the matrix Mittag-Leffler function, which was 

used in the study conducted in our most recent publication. Since 

these generalized Mittag-Leffler functions are complex and there 

are no current means of consistently obtaining an exact solution, 

we developed a Python program to numerically approximate the 

values of these functions. 

What the researchers found 
Using various techniques, we have been able to find the conditions 

necessary for several fractional partial integro-differential equations 

to have a solution in the spaces we were working in. Furthermore, we 

showed that those solutions would be unique. Additionally, we have 

developed several extensions to the Mittag-Leffler functions—as well 

as corresponding code to numerically approximate them—that have 

proven to be useful in the analysis of various equations. 

How this research can be used 
There are various ways in which our research can be used. From a 

scientific and engineering perspective, it is possible that in their 

own research, they obtain an equation that is in the form of one of 

the equations we have studied. If that is the case, they can use our 

analysis to understand different properties of the equations. From 

a theoretical perspective, we have demonstrated multiple 

techniques that other researchers can learn and use in their 

research, and the generalizations of the Mittag-Leffler function also 

have many nice properties that researchers may find useful. 
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